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Abstract

The dynamic elastic moduli of isotropic, homogeneous ceramics is commonly determined by
resonance methods. A prismatic beam specimen is vibrated in a flexural mode, and the resonant
frequency is measured. The beam may have a square, rectangular, or circular cross section.
Elastic modulus is determined from the resonant frequency, the mass or density of the prism, and
the beam’s physical dimensions. Under ideal circumstances, the beam cross section should have
a simple prismatic shape, but in practice, the method is sometimes applied to rectangular
specimens with edge chamfers or radii that are applied to reduce edge flaw sensitivity during
strength tests. The effect of such edge treatments on the resonance frequency and a simple means
to correct the calculated elastic modulus for the edge treatment are provided in this note.
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1. Introduction

The dynamic elastic moduli of isotropic, homogeneous ceramics is commonly determined by
resonance methods [1-6]. A prismatic beam specimen is vibrated in a flexural mode, and the
resonant frequency is measured. The vibration may either be by continuous or impulse
excitation. The beam may have a square, rectangular, or circular cross section. Elastic modulus
is determined from the resonant frequency, the mass or density of the prism, and the beam’s
physical dimensions. Under ideal circumstances, the beam cross section should have a simple
prismatic shape, but in practice, the method is sometimes applied to rectangular specimens with
edge chamfers or radii that are applied to reduce edge flaw sensitivity during strength tests. The
effect of such edge treatments on the resonance frequency and a simple means to correct the

calculated elastic modulus for the edge treatment are provided in this note.

The basic wave equation for the propagation of an elastic wave in an elastic medium is
E = pv?, 1)
where E is the elastic modulus, p is the material density, and v is the wave speed. Goens [7]

solved Timoshenko’s [8] equation relating Young’s modulus to the flexural resonance frequency

for bars of different cross section. Pickett [3] further simplified Goen’s solution for elastic

modulus, E, which may be expressed in the following form:
E = C,Wf?, )
where W is weight of the prism, f is the flexural resonant frequency, and C; is given by

243
C = ﬂg_Tl_“. , 3)
gl(4.730)




where £ is the prism length, g is the gravitational constant, I is the second moment of inertia for
the beam cross section, and T; is a dimensionless geometric constant that depends upon the radius
of gyration of the prism cross section, the length of the prism, and Poisson’s ratio. Subsequent
analysis and experimental work [1, 2, 4, 5] refined the equations for T, and led to an equation for

E:

402
E,, = 09465251 T, @

d2

where d is the specimen thickness and T is a new dimensionless geometric term. The subscripts b
and p attached to E denote the formula is for an ideal rectangular beam (no edge treatment) and

the calculation uses the density.

For an ideal rectangular beam (no edge treatment)
p, = m/(bds), )

where py is the material density, m is the mass, and b is the specimen width. Substituting into

equation 4, results in

T( ¢
E, . =0.9465mf > —| — |, 6

bm b ( d3 ] ( )
where the subscripts b and m attached to E denote that the formula calculates the modulus of an

ideal rectangular beam (no edge treatment) using the mass and physical dimensions of the beam.

This latter form is commonly used today in standard test methods.

Empirical solutions for T, are available for ideal rectangular cross section prisms and are used

in the ASTM flexural resonance standard test methods [9-14]. Several standards [9-12]




caution that chamfering or rounding of edges may create an experimental error of undefined
magnitude. They recommend against the use of these bars, but this is unnecessarily restrictive as

we will show.

The chamfers reduce the cross-sectional moment of inertia, I, and slightly alter the radius of
gyration, and alter the relationship between density and the physical dimensions of the beam,
equation 5. The effect upon I has previously been quantified in connection with work to
minimize experimental error in flexure strength testing [15-17]. Evena small chamfer can alter I
a meaningful amount and must be taken into account when preparing flexure specimens for
strength testing. For example, a 45° chamfer of 0.15-mm size will reduce I by 1% for standard
3-mm x 4-mm cross section flexure strength specimens, which in turn causes the flexure stress to
be underestimated by 1%. Consequently, the 0.15-mm chamfer size is the maximum allowed by
several world flexure strength standards [18, 19]. Equations for I, for chamfered or round-edged
beams in bending and error tables for the stress corrections, are available in the works of Baratta
and coworkers [15, 16]. These equations for I are repeated here for convenience, and rather than
list errors, a simple correction factor for the elastic modulus is furnished. The moment of inertia,

I, for a rectangular cross section beam is

bd?
I, =—. 7
12 ™

The true moment of inertia, I, for a beam with 45°.chamfers of size ¢, as shown in Figure 1

[15, 16}, is
3 2
I, =l’fl——99—(c2 +1@a-2c) ) ®)

where the second term on the right-hand side shows the reduction due to the chamfers. It is
assumed that the four chamfers are identical in size. The true moment of inertia, I, for a beam

with four identical rounded edges of radius r, as shown in Figure 2[16],is
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Figure 1. Specimen Cross Section for a Chamfered-Edge Beam.
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Figure 2. Specimen Cross Section for a Rounded-Edge Beam.
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Combining equations 2 and 3, the true elastic modulus, E., may be calculated as follows:

E, CaWf® I -

cor

10
E, C,Wf? 10

b
I’

where E, and C;; are the calculated elastic modulus (using either equation 4 or 6) and constant

Ci, respectively (assuming the specimen is a simple rectangular beam), uncorrected for chamfers




or edge rounding. C,. is the C, term corrected for the chamfering or edge rounding. The

weight and frequency, f, are the values measured for the chamfered or edge-rounded beam. Then

Ecor =(I_b}Eb’ (11)

E_ =FE,, (12)

where F' is the correction factor for the change in I that is due to the edge treatment and is given
in Table 1 for various chamfers. Analogous values of F' for the same standard specimens with

rounded edges of radius r are given in Table 2.

Equations 11 and 12, with moment of inertia correction only, should be used with equation 4
when the true density is known. The latter may be obtained from a water displacement
measurement, or calculated from the mass and volume of the beam provided that the correction is

made for the reduction in volume due to the edge treatment.

On the other hand, many standard test methods use equation 6, for which an assumption
regarding the density, mass, and physical dimensions of the specimen (equation 5) has been
invoked. If an edge treated beam is used, then an additional correction to remedy this assumption

should be made as follows. The correct density, pr, of a chamfered beam is

pr = mtbd — 2¢?), (13)

* The same factor may be applied to correct the flexure stress, 0, = Fo,, where 0, is the true, maximum flexure
stress in a chamfered or rounded beam and o, is the apparent flexure stress assuming a rectangular cross section.
"The adjustments listed in Tables 1 and 2 are applicable only for flexural modes of resonance and are not

appropriate for the longitudinal or torsional resonance modes.




Table 1. Correction Factors, F and P, for Chamfered Standard 3-mm x 4-mm Strength
Test Specimens®

Moment Correction Factor, F
b=4mm,d=3mm

Density Correction Factor, P
b=4mm,d =3 mm

# A chamfer size of 0.150 mm is the maximum value allowed for this geometry by ASTM C1161 and

ISO 17404.



Table 2. Cérrection Factors, F and P, for Edge Rounded Standard 3-mm x 4-mm Strength

Test Specimens®

ISO 14704.

and for an edge rounded beam,

pr = m/Z(bd -2 (4 - n)),

and then

Eoor = IL P—T— Eb,m’
I, APy

r Moment Correction Factor, F | Density Correction Factor, P
L (mm) b=4mm,d=3mm | b=4mmd=3mm_
0.080 1.0013 1.0005 '
li 0.090 1.0017 1.0006 |
0.100 1.0021 1.0007
0.110 1.0025 1.0009 |
0.120 1.0030 1.0010 B
| 0.130 1.0035 1.0012
0.140 1.0041 1.0014
“ 0.150 1.0046 1.0016
0.160 1.0053 1.0018
0.170 1.0059 1.0021
0.180 1.0066 1.0023
0.190 1.0074 1.0026
0.200 1.0082 1.0029
0.210 1.0090 1.0032
0.220 1.0098 1.0035
0.230 - 1.0107 1.0038
“ 0.240 1.0116 1.0041
0.250 1.0126 1.0045
0.260 1.0136 1.0049
0.270 1.0146 1.0052
0.280 1.0157 1.0056
0.290 1.0168 1.0061
| 0.300 1.0180 1.0065

A rounded edge of 0.200 mm is the maximum value allowed for this geometry by ASTM Cl1 161 and

14
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where E,n is from equation 6, which assumes the beam is an ideal rectangle. For standard

3-mm x 4-mm cross section specimens, the corrected modulus is

E,. =FPE, ., (16)

where P is the correction factor for the change in p due to the edge treatment. Values of P for
standard 3-mm x 4-mm specimens with either chamfered or rounded edges are listed in Tables 1

and 2, respectively.
2. Experimental Procedure

Four ceramic materials listed in Table 3 were used to examine the effect of edge chamfering
on the resonant frequency. Rectangular specimens were prepared with a chamfer geometry as
depicted in Figure 1. Three of the four materials had average charhfer sizes (Table 3), which are
well over the 0.15-mm tolerance commonly specified in flexure strength standards. The resonant
frequency of each material was measured with a commercial impulse excitation instrument.” The
resonant frequency typically was measured three to five times for each specimen and was
répeatable to within 0.01 kHz. The specimen cross section dimensions were measured with a
hand micrometer with a resolution and precision of 0.002 mm. Some specimens may have had a
slight thickness taper (~0.002 mm) along the length, so the cross section dimensions were
measured in the middle of the beam. Length was measured with a hand caliper with a resolution
of 0.01 mm. Mass was measured with a precision laboratory balance to within 0.001 g, and the
density was determined using the mass and physical dimensions of the specimen. The elastic
modulus was calculated using equation 4. For a perfectly rectangular beam, the uncertainty of the
elastic modulus may be estimated from a propagation of uncertainties of the individual variables in
equation 4 [20]. Using the instrument resolutions and precisions listed previously, the type B

(95% confidence limit) uncertainties for mass, width, thickness, length, and frequency

* Grindosonic MkS5, J. W. Lemmens, Inc., St. Louis, MO.
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are 0.042%, 0.050%, 0.067%, 0.020%, and 0.091%, respectively. The total uncertainty in E is
0.29%. The chamfer sizes were measured with a binocular stereomicroscope at magnifications of
up to 160x in conjunction with a precision traversing stage with micrometer heads with a digital
readout of 0.001-mm resolution. All four chamfers were measured. There was some variability in
chamfer sizes for a given specimen, but only an average value for each specimen was used for the

purpose of correcting the elastic modulus.

3. Results and Discussion

Table 3 summarizes the measured (uncorrected) elastic modulus, E,, values determined from

these frequencies and the elastic modulus values corrected for density and the edge chamfering,
Ecor.

Three sintered alumina specimens were 2.816 mm x 4.006 mm x 50.7 mm in size, close to the
standard size of 3 mm x 4 mm x 45 mm - 50 mm. The resonant frequencies of the three bars
were nearly identical: 10.99 kHz, 11.06 kHz, and 11.00 kHz. The uncorrected elastic moduli
averaged 384.2 GPa. This was corrected, for I only, by 2.58% for the finite chamfer size of
0.230 mm to 394.1 GPa, a value in excellent agreement with 395 GPa measured by an ultrasonic
time-of-flight method on the same batch of material as shown in Table 4. (Since the alumina
specimens did not have standard 3-mm x 4-mm cross sections, the moment correction factor, F,
was obtained using equations 8 and 11, and not from Table 1.) The correction for the true
density increased E.,, by an additional 0.95% to 397.8 GPa. This value is good in agreement with
the ultrasonic time of flight value. A single additional chamfered specimen was strain gauged and
tested in a semiarticulting four-point flexure fixture. The static elastic modulus calculated from
the static strains was 386.9 GPa, which is slightly higher than the uncorrected dynamic E but
lower than the correct dynamic E. Static elastic modulus and strain gauge uncertainties may be of
the order of several percent [4, 21], which may account for the discrepancy between the static and

dynamic E values.
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Table 4. Comparison of Corrected Beam Resonance Elastic Moduli, Ec,r, to Values From
Other Methods

E E E E
resonance, chamfered, | resonance, chamfered, | resonance, | ultrasonic, E
[corrected for I only] | [corrected for I and P] | unchamfered | time of flight | resonance disks
(GPa) (GPa) (GPa) (GPa) (GPa)

sintered AL,O; —

hot-pressed SiC - 453.5
I} bot-pressed TiB, 491.9

AION 317.7

Notes: — = Not measured.

Flexure specimens of the three other ceramic materials were prepared, both with and without
edge chamfering. Most of the bars had nominal dimensions of 3 mm x 4 mm x 50 mm, with the
sole exception of the SiC specimens without edge chamfering, which were slightly larger, having
nominal dimension of 3.8 mm x 4mm x 51 mm. Ten specimens, 5 with chamfering and 5
without, were examined for the each of the TiB; and AION materials, while 8 specimens, 4 with

chamfering and 4 without, were examined for the SiC.

The average resonant frequencies measured for the SiC, TiB, and AION, with chamfers
resulted in uncorrected average elastic moduli 'values, Ey, of 4459 GPa, 488.4 GPa, and
312.0 GPa, respectively. These values were then corrected, for I only, by 1.70%, 0.83%, and
1.83%, respectively, based on the average chamfer sizes, which ranged from 0.13 mm to
0.20 mm (Table 3). The corrected values compare exceptionally well with computed elastic
moduli for specimens without chamfers, as shown in Table 4. As in the alumina instance, the
second correction for the true density increased E, for all three of these material. When
compared to the results from the unchamfered bars and the other methods, these values are still

in good agreement, but they do not agree as well as the values corrected for I only.

In the case of the AION, comparable resonance values were available from testing 10 disks,
nominally 50 mm in diameter x 8.3 mm thick, determined in accordance with ASTM C 1259
[11]. The average elastic modulus was 316.7 GPa, in excellent agreement with the beam

resonance results (Table 4) from unchamfered bars and from chamfered bars corrected for I only.

11




4. Summary

In summary, the mathematical solutions to account for thé effect of edge chamfers on the
density and moment of inertia, and in turn the dynamic elastic modulus, Sf a rectangular ceramic
beam has been experimentally verified. The analysis and experimental results show that changé
in the moment of inertia, due to edge chamfering, has a greater impact on the resultant elastic
modulus of a rectangular ceramic beam than the change in density. For standard 3 mm x 4 mm
cross section beams Tables 1 and 2 provide a simple means to correct elastic moduli values for
the change in moment of inertia and density' due to edge chamfering or rounding. For beams
with nonstandard cross sections, equation 11 or 15 should be used, depending on the type of edge
treatment and whether the true density is available.

12
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